

Electric Vehicle Safety: Thermal Runaway and Fire Characteristics & Suppression in Lithium-ion Batteries

August 31 , 2020 7:00 PM - 8:00 PM (IST) WRI India

> Moderator: Shravani Sharma WRI India

Dr. Judy Jeevarajan Research Director – Electrochemical Safety, Underwriters Laboratories Inc.

Speaker:

Battery Safety

Advancing safer energy storage through science

UNDERWRITERS LABORATORIES[™]

© 2020 Underwriters Laboratories Inc. All rights reserved. UL and the UL logo are trademarks of UL LLC.

Judy Jeevarajan, Ph.D. / Underwriters Laboratories Inc.

About UL Battery Safety Group

Working for a safer world

RESEARCH: We conduct research and **share scientific data-driven knowledge** to drive safe, reliable, innovative designs to meet the world's increasing energy demands.

Findings of the research are presented in conferences and other public forums, and also through journal and newsletter publications.

OUTREACH: We conduct the Battery Safety Summits and Battery Safety Council forums.

The Summits and Council forums are platform to catalyze the safety, performance and innovation in the area of batteries for the growth of safe energy storage systems.growth of electric mobility and renewable energy through emphasis on battery performance, safety and innovation.

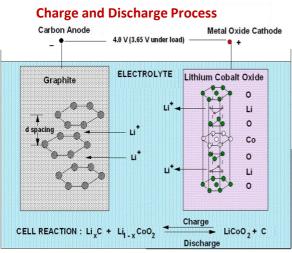
EDUCATION (awareness-building): We participate in **trainings**, and **webinars**, and share our **research findings** in different platforms like learning modules for students of different age groups.

Table of Contents

- Background
- Thermal Runaway in Lithium-ion Cells
- Fire Characterization
 - NMC Cathode Chemistry
 - LFP Cathode Chemistry
- Fire Suppression for Lithium-ion Lab scale
- Summary

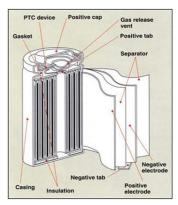
Introduction

- Lithium-ion battery chemistry, first commercialized in the 1990s, has the highest energy density of rechargeable battery chemistries, has no memory effect, has long cycle and calendar life and good rate capability.
- It is used in a myriad of applications today from consumer electronics to electric vehicles and stationary grid energy storage as well as in sea and space applications.
- Associated with the high energy density is their propensity to experience fire and thermal runaway if not designed or used correctly.
- Due to the proliferation of the use of batteries of this chemistry, there are several hundred manufacturers of lithium-ion cells and batteries today; not all cell and battery designs are characterized stringently and they are not all certified especially the low-quality ones that are also inexpensive and can be purchased on-line with a fast turnaround time.
- Characterizing thermal runaway for the various combinations of cathode and anode chemistries, electrolytes and additives as well as the variety of formats, shapes and sizes that these cells and batteries come in, is a significant challenge.
- Determining the best fire suppressant for the same is also a major challenge for the li-ion battery industry that is especially used for electric vehicles.
- This presentation will address some of the challenges of thermal runaway characterization as well as the fire suppressants and fire suppressing methods.



Thermal Runaway in Lithium-ion Cells and Batteries

- What is "Thermal Runaway"?
- Wikipedia: thermal runaway
 - A repeating cycle in which excessive heat causes more heat until the operation c eases, or an explosion occurs. Examples are lithium-ion batteries, germaniumbased bipolar transistors, etc. In the latter case, high temperatures cause current to leak, heat up even more and eventually become unstable or selfdestruct.
- Typical Definition in Lithium-ion Standards:
 - Thermal runaway is defined as an accelerating release of heat inside a cell due to a series of uncontrollable exothermic reactions manifesting as an uncontrolled increase in cell temperature.


Lithium-ion Cell

Components of a Lithium-ion Cell

1. **Cathode:** The positive electrode of the cell (for discharge).

- 2. Anode: The negative electrode of the cell (for discharge).
- 3. Electrolyte: The medium that provides the ion transport mechanism between the positive and negative electrodes in a cell. (This can be aqueous or non-aqueous)
- 4. **Separator:** A microporous material that keeps the cathode and anode from touching each other.

Li-ion Battery Designs and Challenges

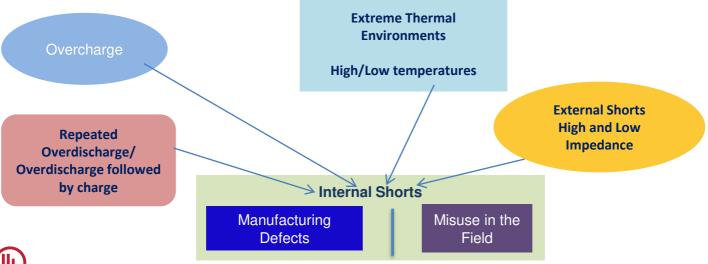
Incidents of Li-ion Fires

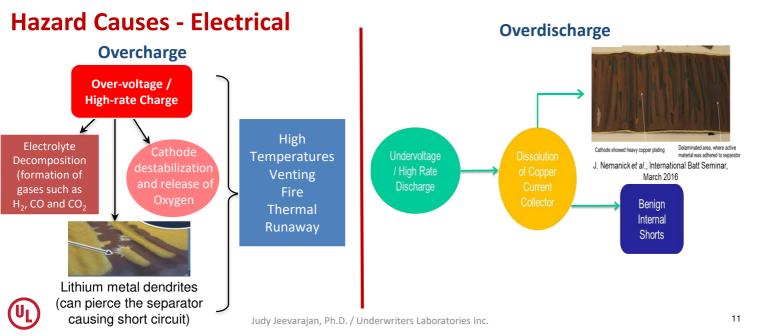
Low Voltage/ Low Capacity

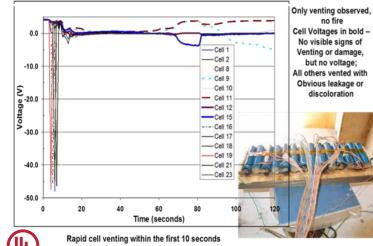
Fire Incidents in Portable Applications

Lithium polymer fire burns down shop

Fire Incidents in Cell Manufacturing Facilities

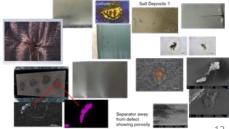



Li-ion Cell Hazards


Hazard Causes - Electrical

Hazard Causes Electrical (contd...)

External Short - High and Low Impedance


Internal Short

 Manufacturing Defect

Field Failures

Manufacturing Defect Major defects can be screened by manufacturers Subtle defects need to be identified and screened out during acceptance testing. Defects include poor manufacturing (creases, tears, delamination, etc.), introduction of foreign or native object debris,

Field Failures Avoided by use within manufacturer's specification (I, V, T); stringent cell and battery selection and screening criteria; stringent monitoring and control (I, V, T); cell balancing, health checks (with issuerecognizable tests); good thermal design.

Thermal Runaway Process - Overcharge

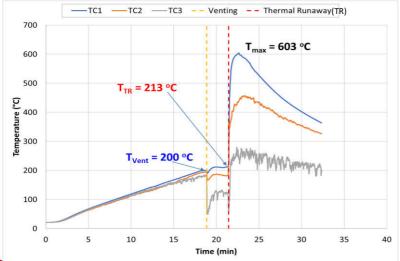
Thermal Runaway – Single Cell Tests – Patch Heater

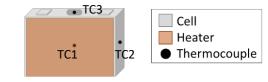
Nickel Manganese Cobalt (NMC) Cathode Lithium-ion Cell

Smoke only

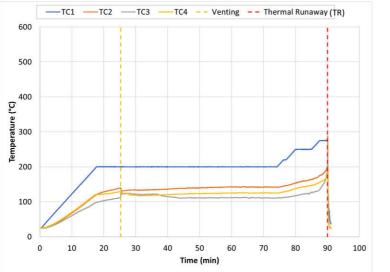
Lithium Iron Phosphate (LFP) Cathode Lithium-ion

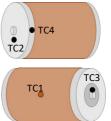
Cell 6 – Fire & Smoke


Variations in behavior between cells from the same battery


Cell 7 – Smoke only

Thermal Runaway – NMC Cell

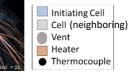

TC1 = Front (Under the heater)


TC2 = Side (Unheated end)

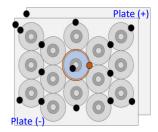
TC3 = Vent

Thermal Runaway – LFP Cell

TC1 = Side (Under the heater)TC2 = Bottom (Unheated end)TC3 = Vent (Top)


TC4 = Side (Next to the heater)

Thermal Runaway – Module Level NMC Module Patch Heater Method Fire and Smoke **LFP Modules** NMC Module Smoke only Initiating Cell Elapsed time Cell (neighboring) t = 30:23Vent Heater Thermocouple Cell 1 Cell 2 Cell 3


Fire and Smoke

LFP modules showed different result (similar behavior as single cell tests)

Thermal runaway

T = 248 °C

Thermal Runaway – Battery Level

Patch Heater Method

Cell Gas Composition Test -NMC

Component		Measured %	Component LFL
Carbon Monoxide	CO	<mark>23.76% **</mark>	10.9%
Carbon Dioxide	CO ₂	26.65%	N/A
Hydrogen	H ₂	<mark>36.03% **</mark>	4.0%
Methane	CH_4	3.55%	4.4%
Ethylene	C ₂ H ₄	<mark>3.20%</mark>	2.4%
Ethane	C ₂ H ₆	0.57%	2.4%
Propylene	C ₃ H ₆	<mark>2.71%</mark>	1.8%
Propane	C₃H ₈	0.15%	1.7%
Propadiene	C_3H_4	0.01%	1.9%
-	C ₄ (Total)	0.83%	-
-	C ₅ (Total)	0.09%	-
Hexane	C ₆ H ₁₄	0.00%	1.0%
Dimethyl Carbonate (DMC)	$C_3H_6O_3$	1.08%	Not specified
Ethyl Methyl Carbonate (EMC)	$C_4H_8O_3$	0.46%	Not specified
Total	-	100	-
Individual C4 Components		-	-
Butane	$C_{4}H_{10}$	0.04%	1.4%
Butene	C ₄ H ₈	0.60%	1.5%
Butadiene	C ₄ H ₆	0.19%	1.4%
Individual C5 Components		-	-
Pentane	n-C ₅ H ₁₂	0.09%	1.1%
derwriters Laboratories Inc.	* Gases above co	ombustible volun	ne ₁₉

Judy Jeevarajan, Ph.D. / Underwriters Laboratories Inc.

Cell Gas Composition Test -LFP

32 mm Diameter 70 mm Height

5.5 Ah Li-ion LFP cells (12 V replacement batteries for lead-acid) Volume of gas released during thermal runaway in a <u>single</u> cell – <mark>3 Liters</mark>

	Component		Measured %	Component LFL	
Test -LFP	Carbon Monoxide	со	0.0%	10.9%	
	Carbon Dioxide	CO ₂	21.60%	N/A	
	Hydrogen	H,	<mark>54.00% **</mark>	4.0%	
	Methane	CH₄	<mark>6.10% **</mark>	4.4%	
	Ethylene C ₂ H ₄		<mark>3.46%</mark>	2.4%	
	Ethane	C ₂ H ₆	1.13%	2.4%	
	Propylene	C ₃ H ₆	1.51%	1.8%	
1200-	Propane	C ₃ H ₈	0.59%	1.7%	
(JAN)	Propadiene	C ₃ H ₄	0.0%	1.9%	
	-	C ₄ (Total)	1.67%	-	
	-	C₅ (Total)	0.16%	-	
China and China	Hexane	C ₆ H ₁₄	0.05%	1.0%	
	Dimethyl Carbonate (DMC)	$C_3H_6O_3$	3.35%	Not specified	
	Ethyl Methyl Carbonate	$C_4H_8O_3$	6.32%	Not specified	
	(EMC)				
	Total	-	100	-	
cement	Individual C4 Components		-	-	
Cement	Butane	$C_{4}H_{10}$	0.38%	1.4%	
	Butene	C₄H ₈		1.5%	
ermal runaway in	Butadiene	C ₄ H ₆	0.27%	1.4%	
	Individual C5 Components		-	-	
	Pentane	n-C ₅ H ₁₂	0.05%	1.1%	
Judy Jeevarajan, Ph.D. / l	Underwriters Laboratories Inc.	** Gases ab	ove combustible	volume 20	

Gas Analysis for Battery Packs

Gas Component	Peak Release Rate (L/min)	Non-flaming (L)	Flaming (L)	
Total Hydrocarbons (Propane Equivalent)	113.3	17	165	
Carbon Dioxide	471.1	< 1	1403	
Carbon Monoxide	33.8	<1	90	
Hydrogen	52.4	Below Detectable Limit (< 17.3 L/min)	83	

NMC 15.2 V; 75 Ah

LFP 15.2 V; 82.5 Ah

Gas Component	Peak Release Rate (L/min)	Venting (L)	Thermal Runaway (L)	
Total Hydrocarbons (Propane Equivalent)	35.8	Below Detectable Limit (< 0.01 L/min)	357	
Carbon Dioxide	< 1.8	Below Detectable Limit (< 1.8 L/min)	Below Detectable Limit (< 1.8 L/min)	
Carbon Monoxide	< 0.1	Below Detectable Limit (< 0.1 L/min)	Below Detectable Limit (< 0.1 L/min)	
Hydrogen	16.8	Below Detectable Limit (< 8.0 L/min)	196	

Challenge with Gas Composition Analysis

- HF which is produced in large quantities is not easy to detect as it condenses on the walls of the chamber and pipes
 - Prof. Mellander and Dr. Larsson have carried out experimental studies and modeling work to quantify the volume of HF produced
- Gas analysis of the Arizona Battery Energy Storage System (BESS) showed the presence of HCN above toxicity limits
 - Although li-ion cells do not produce HCN, components such as plastics, used in the manufacturing of BESS produce HCN as a byproduct when they burn
- Better analytical methods to determine HF concentrations need to be developed.

Fire Suppression Studies Lab Scale

Li-Ion Module Fire Suppression Experiments

Experiment

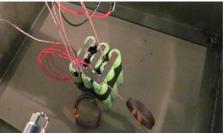
Baseline (1 mm and 0 mm spacing)

N₂ Early release

N₂ Late release

Water Mist Early (side) release

Water Mist Late (side) release


Water Mist Early (overhead)

Water Mist Late (overhead)

Stat-X Early release

Stat-X Late release

9P Module Configuration

Cells in contact physically and electrically to simulate worst case configuration

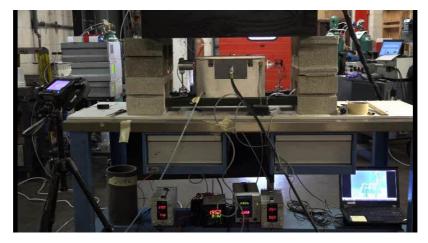
Cell with heater

Venting and Thermal Runaway Detection Cues

Detection Cues:

- Cell temperature
- Light attenuation (smoke)
- Pressure
- Module voltage

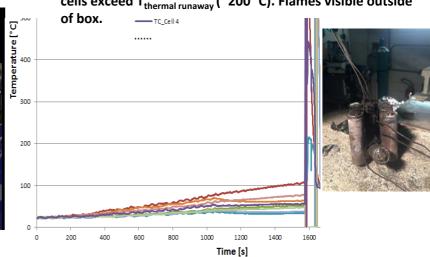
 Visual (initial vent and thermal runaway)


	T _{vent}	Experiment	T _{thermal} runaway
Baseline	~133°C	Baseline	~210 °C
N ₂ Early	~129°C	N_2 Early	~190 °C
N ₂ Late	~133°C	N ₂ Late	~200 °C
WM Early	~136°C	WM Early	~200 °C
WM Late	~137°C	WM Late	~197 °C
Stat-X Early	~127°C	Stat-X Early	~215 °C
Stat-X Late	~137°C	Stat-X Late	~210 °C

T_{vent} & T_{thermal runaway} occur in a relatively narrow and repeatable range Both temperatures are reliable predictors of CID /vent opening and thermal runaway for this cell design

Stat-X : A potassium carbonate-based fire extinguisher

Fire Suppression - Baseline Test - No fire Suppressant



Early Release Water Mist

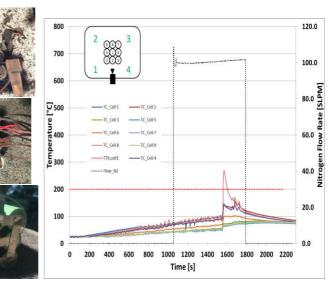
Early water mist: cools cells near trigger cell, however all cells exceed T_{thermal runaway} (~200 °C). Flames visible outside

Late Release Water Mist

Judy Jeevarajan, Ph.D. / Underwriters Laboratories Inc.

1400

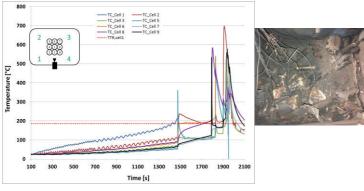
Time [s]


1600

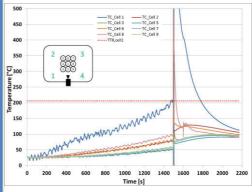
1800

Early Release N₂

- Single cell in thermal runaway
- No flames after thermal runaway, in or out of box



Fire Extinguisher – Potassium Carbonate Type


Early Release

- Thermal runaway propagated to all cells
- Short fire outside the box.

Late Release

- Thermal runaway propagated to two cells.
- Very short fire outside the box after thermal runaway was observed.

Summary of Test Results

Experiment	T _{rupture}	T _{thermal} runaway	Propagation beyond cell 1	Flame outside box?
Baseline	~133°C	~210 °C	Yes (all)	Yes; sustained fire
Water Mist Early (side)	~136°C	~200 °C	Yes (all)	Yes
Water Mist Late (side)	~137°C	~197 °C	Yes	No
Water Mist Early (Overhead)	127	No	No	No
Water Mist Late (Overhead)	134 °C	~194 °C	Yes	Yes
N ₂ Early	~129°C	~190 °C	No	Small or no sparks
N ₂ Late	~133°C	~200 °C	No	Small or no sparks
Stat-X Early	~127°C	~215 °C	Yes (all)	Yes – at beginning and end
Stat-X Late	~137°C	~210 °C	Yes (2)	No; Small sparks

Summary

- Thermal runaway occurs due to hazard causes that can be electrical, mechanical or thermal in nature.
 - Fully characterizing a system under all credible off-nominal conditions will help with safer designs and usage limits
 - Carrying out a high-fidelity thermal analysis provides the data needed to design appropriate heat dissipation paths that lead to safer battery systems
- The events accompanying thermal runaway can vary quite a bit venting or fire or smoke or combinations of these can be observed.
- Cell to cell variation in behavior is a challenge as that will require multiple tests from each cell lot to confirm worst case behavior.
- Toxic and flammable gases are released from lithium-ion batteries and battery systems.
 - Data obtained on the gases evolved should be analyzed for the volume of the chamber (room) or confined space that the battery system is located in, to understand worst case flammability and explosive as well as toxicity levels and help with the design of appropriate vent systems.
- Fire extinguishing methods need to be studied further and optimized for the size and nature of the battery as well as the
 design and environment of the application it is used in.

Acknowledgments

- Dr. Pravinray Gandhi, Alex Klieger and team (UL Northbrook)
- Dr. Daniel Juarez Robles and Saad Azam (UL Electrochemical Safety Team)

Thank you!

Electric Vehicle Safety: Thermal Runaway and Fire Characteristics & Suppression in Lithium-ion Batteries

August 31 , 2020 7:00 PM - 8:00 PM (IST) WRI India

> Moderator: Shravani Sharma WRI India

Dr. Judy Jeevarajan Research Director – Electrochemical Safety, Underwriters Laboratories Inc.

Speaker:

Back-up Charts

Water Mist Tests

- Same flow rate and pressure
- Same module position
- Same nozzle and nozzle position
- Early release water mist: discharged after first cell rupture
- Late release water mist: discharged at first sign of fire
- Tests were carried out with water released from the side as well as overhead.

- Same Nozzle, nozzle position
- Same N₂ flow rate
- Early release: discharged at first cell rupture
- Late release: discharged at first fire

List of Safety Standards for EVs

Table 8-1. List of safety standards of Li-ion batteries.

Organization	Designation	Title	Year	Applicability	Summarized in this Chapter
Sandia Report	SAND2005- 3123	FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications (Doughty and Crafts 2006)	2006	Cell, module, or pack in a motor vehicle	
SAE	SAE J2464	Electric and Hybrid Electric Vehicle Rechargeable Energy Storage Systems (RESS), Safety and Abuse Testing	2009	Cell, module, or pack in a motor vehicle	Table 8-4
International	SAE J2929	Electric and Hybrid Vehicle Propulsion Battery System Safety Standard — Lithium-Based Rechargeable Cells	2011	System or whole vehicle	Table 8-3
International	ISO 6469-1	Electrically propelled road vehicles Safety specifications Part 1: On-board rechargeable energy storage system (RESS)	2009	Cell, module, or pack in a motor vehicle	
Organization for Standardization ISO 6469-		Electrically propelled road vehicles Safety specifications Part 2: Vehicle operational safety means and protection against failures	2009	System or whole vehicle	
	UL 1642	Standard for Lithium Batteries	2005		Table 8-6
Underwriters Laboratories	UL 2580	Batteries for Use in Electric Vehicles	2011	Packs, subassemblies and modules in a motor vehicle	Table 8-7
International Electrotechnical	IEC 62133	Secondary Cells and Batteries Containing Alkaline or Other Non- acid Electrolytes — Safety Requirements for Portable Sealed Secondary Cells, and for Batteries Made from Them, for Use in Portable Applications	2002		
Commission	IEC 62281	Safety of Primary and Secondary Lithium Cells and Batteries during Transport	2004	For transporting batteries	
United Nations	38.3 (E.09.VIII.3)	Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, Part III, Section 38.3	2010	For transporting batteries	Table 8-5
Institute of	IEEE 1625	Rechargeable Batteries for Multi-Cell Mobile Computing Devices	2008	Not to vehicles	
Electrical and Electronics Engineers	IEEE 1725	Rechargeable Batteries for Cellular Telephones	2011	Not to vehicles	Table 8-8

Toxicity

10.2.3 Secondary Toxic and Incompatible Materials Hazards

Toxic materials are those battery chemicals and byproducts that are toxic or corrosive by themselves or react with other materials to produce toxic, flammable, or heat-generating chemicals. As described in Chapters 2 and 3, the main components of Li-ion batteries share common health effects, material incompatibilities, and flammability characteristics. To determine the toxicity and incompatibilities of specific chemicals, readers should refer to MSDS and other safety information.

The data in Chapters 2 and 3 indicate that the cathode component appears to pose significant toxicity risks. However, the chance of human exposure to chemicals in the cathode could be considered low because these components are solids that possess high melting temperatures. Exposure to these chemicals would require the rupture of a battery with fragmentation or vaporization of the component chemicals, which is considered unlikely.

The more hazardous chemicals inherently present in a Li-ion battery are those comprising the electrolyte salt and electrolyte solvent. In the majority of Li-ion battery designs, the electrolyte salt (LiPF₆) is dissolved in the electrolyte solvent (EC, DMC, PC, or DEC); therefore, the more likely hazard would be ejection or leakage of electrolyte fluid from the battery. The primary hazards with the electrolyte solvents are the health effects noted in Chapter 3 and the flammability hazards. The combustion of any of the electrolyte solvents would also yield water (H₂O), which may influence the degradation of the LiPF₆ salt, and the asphysiates CO and CO₂.

The primary hazards with the electrolyte salt LiPF₆ are health effects (noted in Chapter 3), and its incompatibility with water, which yields lithium fluoride (LiF), phosphoryl fluoride (POF₃), and hydrofluoric acid (HF) by the following reaction (Yang, Zhuang, & Ross, 2006):

$LiPF_6 + H_2O \rightarrow LiF + POF_3 + 2HF.$

If failure processes associated with thermal runaway occur within the battery, several hazardous chemicals may also be produced from various reactions. The significant hazardous products formed in these reactions include the flammable hydrocarbons (C:H4; C:H4; and C2:H6); flammable gases and/or asphyxiates (H2, CO2, and CO); and LiF. Water can also be produced from the combustion of the electrolyte solvents, which could contribute to the formation of HF, POF_3 , and additional LiF.

The primary hazards with LiF are its toxicity if ingested or inhaled and its incompatibility with water. Contact with water can result in the formation of HF, one of the other hazardous materials discussed in Chapter 3. The primary hazards with HF are its extreme toxicity and corrosiveness and its incompatibility with metal, glass, and rubber (common vehicle materials), which subsequently release flammable hydrogen gas upon contact. Little to no data exist on the specific toxicity and incompatibilities as $POCl_3$ given that both chemicals possess a halogen (chlorine or fluorine) and phosphorus.

Toxicity

10.2.4 Secondary Asphyxiation Hazards

The danger of asphyxiation is another concern with venting or ruptured Li-ion batteries. Asphyxiation may be a hazard in vehicle crashes when the battery casing has been compromised and there is little to no opportunity for external venting or air changeover within the vehicle (i.e., vehicle windows are in the up position and doors are closed). MSDS data for known asphyxiates state that the symptoms of asphyxiation (dizziness, nausea, etc.) can occur when oxygen levels are less than approximately 19.5 percent; levels under 8 to 10 percent can bring about rapid unconsciousness.

Chemicals that pose the highest threat of asphyxiation are the gases that are released when the battery casing is compromised and that displace the ambient vehicle air, such as H_2 , C_2H_4 , C_2H_6 , C_3H_6 , along with carbon dioxide (CO₂) and carbon monoxide (CO) produced from combustion. The threat of asphyxiation is also present for the volatile electrolyte solvents. For both the gases and solvents, the specific threat of asphyxiation is a function of the quantities of the chemicals released, their release rate, and the degree of accumulation in the vehicle. Most of the asphyxiates produced as a result of Li-ion battery failure are also flammability hazards, and can be present in both the flammability and asphyxiation ranges at the same time.

