

ELECTRIC MOBILITY FORUM

TESTING AND ACCREDITATION STATUS OF ELECTRIC VEHICLES IN INDIA

October 18, 2019 3:00 PM - 4:00 PM (IST) WRI India Delhi

ANAND DESHPANDE SR. DEPUTY DIRECTOR ARAI (PUNE)

Webinar on

Testing and Approval of Electric Vehicles in India

18 October 2019

Clean Disruption of Energy & Transportation

Tony Seba, Author & Stanford University Economist Professor

With convergence of technologies (solar PV panels, lithium-ion batteries) accelerated by business model innovations (ride sharing services), the author forecasts that by 2030:

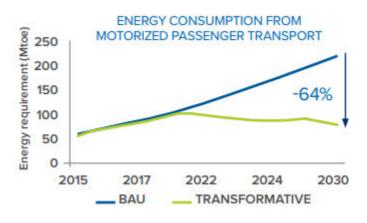
- All new energy will be provided by solar and wind
- All new cars will be EVs
- All of these cars will be autonomous (self-driving)
- Individual car ownership model will be obsolete; new car market will shrink by 80% (Mobility as Service)

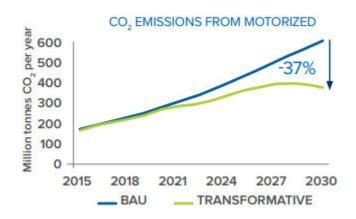
EV Global Scenario & Outlook

- ☐ Global electric car stock surpassed 5 million vehicles in 2018
- □ Various countries such as Norway, Netherlands, Germany, France, UK have set targets for migrating to total electric transportation by 2030 2040
- India has focused on electrification of transportation
- □ Various vehicle manufacturers such as Volvo, Daimler, Volkswagen, have announced plans to go for only electric powertrain for future models
- ☐ As per forecast by International Energy Agency (IEA) in its Global Outlook 2017 report, electric car stock will be ~ 70 million by 2025
- World Bank announced that it will stop financing upstream oil and gas projects after2019 to raise funds to finance a shift towards clean energy

EV Global Scenario – Electric Buses

- ☐ Global electric bus stock reached 4,60,000 vehicles in 2018
- ☐ China accounts for 99% of global market for electric buses
- ☐ Shenzhen city operates largest fleet of 16,000 electric buses
- ☐ Other countries include Europe, Latin America, USA and India
- Schiphol Airport operates 100 electric buses
- In India 390 buses operate in 11 cities with funding under FAME-I Scheme
- ☐ DHI has approved 5595 electric buses to 64 cities / State Govt entities / STUs for intr-city and inter city operation under FAME-II Scheme


Government of India Initiatives...



NITI Aayog Report - Approach to Mobility Transformation

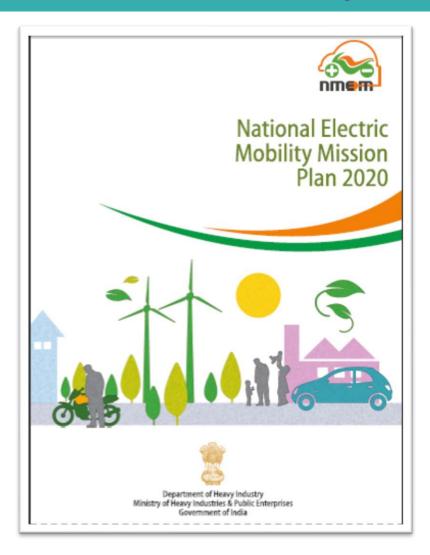
India can save 64% of anticipated road based mobility related energy demand and 37% of carbon emissions in 2030 by pursuing a shared, electric and connected mobility resulting in a net savings of roughly Rs 3.9 lakh crore (approximately 60 billion USD) in 2030

FIGURES ES-1 - ES-2:
MODELED ENERGY
REQUIREMENT FOR
PASSENGER MOBILITY
(LEFT) AND RESULTANT
CO₂ EMISSIONS (RIGHT)
FOR "BUSINESS-ASUSUAL" (BAU) AND
"TRANSFORMATIVE"
SCENARIOS, 2015–2030

Driving Forces

Ambient Air Quality Concerns Import of Oil (Energy Security)

Paris Climate Change Agreement


Thrust on Solar Power Generation & Storage

National Electric Mobility Mission Plan (NEMMP)

<u>Faster Adoption and</u> <u>Manufacturing of Electric</u> (& Hybrid) Vehicles in India

FAME-India Scheme

The scheme has 4 focus areas:

- Technology development
- Demand creation
- Pilot projects
- Charging infrastructure

Background of FAME India Scheme

- Phase I of FAME (Faster Adaption of Manufacturing of Hybrid and Electric Vehicles) launched in Mar-15 with outlay of INR795 crore
- FAME-I initially approved for 2 years starting from Apr-15 was further extended up to 31-Mar-19
- Allocation of outlay of Rs. 795 crore further enhanced to Rs. 895 crore
- Based on experience of FAME-I and inputs from stakeholders
 DHI formulated Phase II of FAME (FAME-II)

FAME-II: Overview

- Implementation over a period of 3 years starting from 1-Apr-19
- Verticals/Components:
 - Demand Incentives
 - Establishment of network of charging stations
 - Administration of Scheme including publicity
- Breakup:

(All amounts are in Rs. Crore)

Sr. No.	Component	2019-20	2020-21	2021-22	Total Fund requirement in crores
1	Demand Incentives	822	4587	3187	8596
2	Charging Infrastructure	300	400	300	1000
Administrative Expenditure including Publicity, ICE activities		12	13	13	38
Total for	FAME-II	1134	5000	3500	9634
4 Committed expenditure of Phase –I		366	0	0	366
Total		1500	5000	3500	10000

• Flexibility in fund allocation among themselves

Demand Incentive: Introduction

- Intended to help in demand generation of EVs by reducing acquisition cost
- Vehicle fitted with 'advanced batteries' are eligible
- Demand incentive is <u>based on the battery capacity in kWh</u>
- With the emphasis of environment friendly <u>public transport</u>, scheme is mainly for
 - Public transport or commercial purpose in 3 wheeler, 4 wheeler and bus
 - Privately owned 2 wheelers as a mass segment
- Applicable categories of the vehicles:
 - Bus (EV)
 - Four wheelers (EV, SHEV, PHEV)
 - Three Wheeler (EV)
 - Two wheeler (EV)
- Demand Incentives are based on energy content of the battery
 - INR 10,000/kwh for all vehicles except buses
 - INR 20,000/kwh for buses

Demand Incentive: Details

Vehicle segment-wise Incentives, Maximum Number of vehicles to be supported and other details.

Sr. No.	Vehicle Segment	Maximum Number of vehicles to be supported	Approximate Size of battery in KWH	Incentive @ Incentive @ I0000/KWh for all vehicles and 20000/KWh for Buses and Trucks	Maximum Ex-factory price to avail incentive.	Total Fund support from DHI.
1	Registered e-2 Wheelers	1000000	2 KWH	Rs. 20000/-	Rs. 1.5 Laklis	Rs. 2000 Cr
2	Registered e-3 Wheelers (including eRikshaws)	500000	5 KWH	Rs. 50000/-	Rs. 5 Lakhs	Rs.2500 Cr
3	e- 4 Wheelers	35000	I5 KWH	Rs. 150000/-	Rs. 15 Lakhs	Rs. 525 Cr
4	4W Strong Hybrid Vehicle	20000	1.3 KWH	Rs. 13000	Rs. 15 Lakhs	Rs. 26 Cr
5	c-Bus	7090	250 KWH	Rs. 50 Lakhs/-	Rs. 2 Crores	Rs. 3545 Cr
	Total Demand In	centive				Rs. 8596 Crores

^{##} The proposed amount of incentives per KWH are, however, subject to review as per the reduction in battery costs & thereby reduction in vehicle cost and would be notified accordingly from time to time. It is to be noted that the number of vehicles and fund support among the sub components as above is fungible with the approval of PISC.

EV Incentives FAME-II

Demand incentive to purchaser

Vehicle Category	Approx. Incentive
2 Wheelers	Rs. 20,000 (~USD 300)
3 Wheelers	Rs. 50,000 (~USD 700)
Passenger Cars & LCVs (commercial taxi, goods transport)	Rs. 1,50,000 (~USD 2,000)
Buses (public transport by STUs)	Rs. 50,00,000 (~USD 70,000) on Opex model

- GST at discounted rate of 5%
- Income tax deduction up to Rs. 1.5 lakhs on interest component of electric vehicle loan by purchaser
- State Govts providing waiver of registration tax, road tax and additional incentives etc.
- State Govts are formulating State EV Policies e.g. Maharashtra, Karnataka, Telangana, Andhra Pradesh

Charging Infrastructure

- Adequate public charging infrastructure to instil confidence among EV users
- Charging infrastructure to be established as per <u>MoP notification</u> dated 1st October 2019 "Charging Infrastructure for Electrical Vehicles Guidelines and Standards"
- DHI EoI for establishment of 1000 public charging stations
- Funding to the extent of 100 % of the cost depending upon the project proposal
- Consideration of pantograph charging, flash charging
- Encourage interlinking of renewable energy sources

FAME II: Demand Incentive – Eligibility Assessment Procedure


Initial Assessment

- Type approval as per CMVR
- Ex-factory price
- Complianc e to localizatio n content
- Battery warranty
- Facilities for after sales service
- Public/co mmercial transport

Technical Assessment

- Type of battery
- Battery density
- Life cycle
- Fitment of monitorin g device
- Electric regenerati ve braking system

Performance and

- Energy/F uel consumpti on
- Minimum maximum speed
- Minimum accelerati on
- Measure ment of battery energy content (battery capacity) in kWh

Eligibility Certificate

- Scheme sticker
- OEM registratio n under scheme
- Cap on incentive:
 20% of min. exshowroo m price
- Registrati on as "Motor Vehicle" as per CMVR

Phase Manufacturing Program (PMP) Guidelines

		e-2W	e-3W	e-3W	e-4W	e-4W	e-Bus
Sr. No.		14.010	e-Rickshaw	1.5	884	NI	140/140
		L1 & L2	e-Cart	L5	M1	N1	M2/M3
1	HVAC	NA	NA	NA	1-Oct-2019	1-Oct-2019	1-Apr-2020
2	Electric compressor	NA	NA	NA	1-Oct 2020	1-Oct 2020	1-Oct 2020
3	Wheel rim	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Apr-2019
4	Power & control wiring harness along with connectors	1-Apr-2019	1-Apr-2019	1-Apr-2019	1-Oct-2019	1-Oct-2019	1-Oct-2019
5	MCB/circuit breakers/electric safety device	1-Apr-2019	1-Apr-2019	1-Apr-2019	1-Apr-2020	1-Apr-2020	1-Apr-2020
6	AC charging inlet Type 2	NA	NA	NA	1-Apr-2020	1-Apr-2020	1-Apr-2020
7	DC charging inlet CCS 2 / CHAdeMO	NA	NA	NA	1-Oct 2020	1-Oct 2020	1-Oct 2020
8	DC charging inlet BEVC DC 001	NA	NA	NA	1-Oct 2020	1-Oct 2020	NA
9	Traction battery pack	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Apr-2020
10	Wheel rim integrated with hub motor	1-Oct-2019	1-Oct-2019	1-Oct-2019	1-Oct-2019	1-Oct-2019	1-Oct-2019
11	DC-DC converter	1-Oct-2019	1-Oct-2019	1-Oct-2019	1-Apr-2020	1-Apr-2020	1-Apr-2020
12	Electronic throttle	1-Apr-2020	1-Apr-2020	1-Apr-2020	1-Apr-2020	1-Apr-2020	1-Apr-2020
13	Vehicle control unit	1-Apr-2020	1-Oct-2019	1-Apr-2020	1-Apr-2020	1-Apr-2020	1-Apr-2020

Phase Manufacturing Program (PMP) Guidelines

		e-2W	e-3W	e-3W	e-4W	e-4W	e-Bus
Sr. No.	Sr. No.		e-Rickshaw	L5	M1	N1	M2/M3
		L1 & L2	e-Cart				/0
14	On board charger	1-Apr-2020	1-Oct-2019	1-Apr-2020	1-Apr-2020	1-Apr-2020	1-Apr-2020
15	Traction motor	1-Apr-2020	1-Oct-2019	1-Apr-2020	1-Apr-2021	1-Apr-2021	1-Apr-2021
16	Integrated rear axle including motor, motor controller, transmission system & rear braking system	NA	1-Oct-2019	1-Apr-2020	NA	NA	NA
17	Traction motor controller / inverter	1-Apr-2020	1-Oct-2019	1-Apr-2020	1-Apr-2021	1-Apr-2021	1-Apr-2021
18	Instrument panel	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Jul-2019	1-Apr-2019
19	Windscreen wiping system	NA	1-Jul-2019	1-Jul-2019	1-Apr-2019	1-Apr-2019	1-Apr-2019
20	Chassis (For e-2W & e-3W - Allowable import content @ 20%)	1-Oct-2019	1-Jul-2019	1-Jul-2019	1-Apr-2019	1-Apr-2019	1-Apr-2019
21	Body Panels	1-Jul-2019	1-Jul-2019	1-Jul-2019	NA	NA	NA

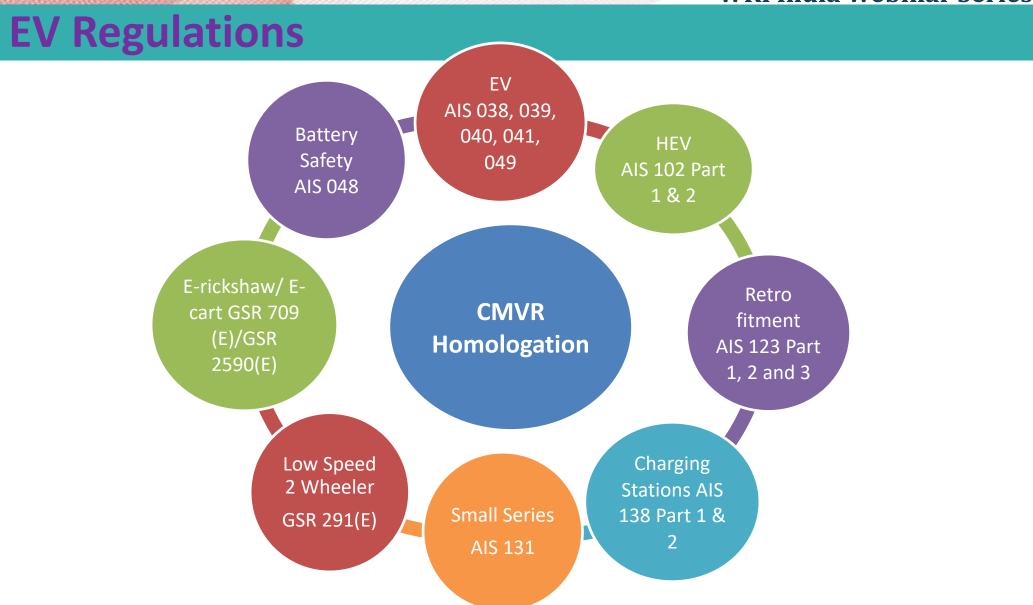
Code	Effective Date of Indigenisation of Parts		
	w.e.f. 1 Apr 2019		
	w.e.f. 1 Jul 2019		
	w.e.f. 1 Oct 2019		

Code	Code Effective Date of Indigenisation of Parts	
	w.e.f. 1 Apr 2020	
	w.e.f. 1 Oct 2020	
	w.e.f. 1 Apr 2021	

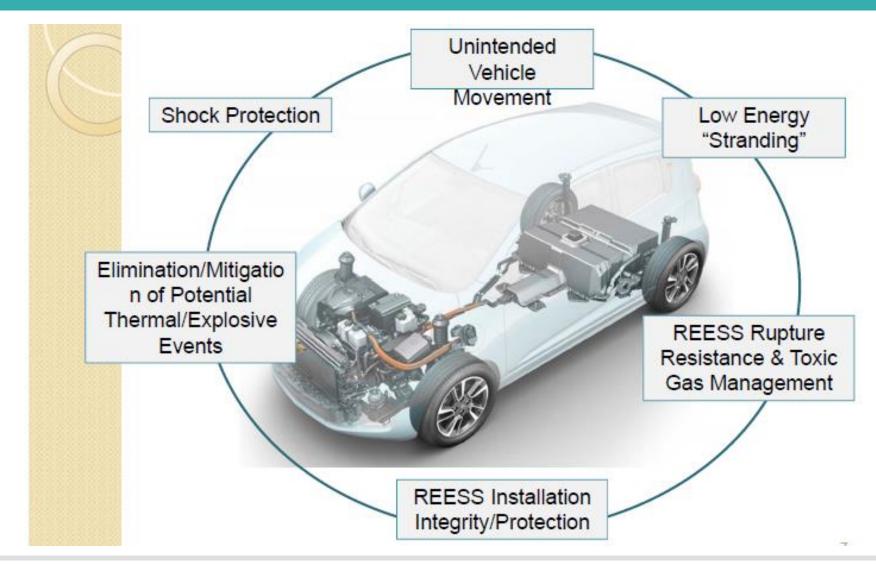
India New EV Program

- Govt. focus on electrification of transportation
- Early EV penetration in public transport
 E-rickshaw, E-auto, Taxis, Buses
- Strategy Aggregation of demand (by EESL)
- EESL tender for 10,000 EV sedan cars and 2000 Bharat EV Chargers
- DHI EoI for STUs for electric bus operation and public charging stations
- Standardisation of tender specifications for electric buses by DHI
- Model Concession Agreement for Opex model by Niti Aayog for electric bus fleet operation

Innovative Business Models

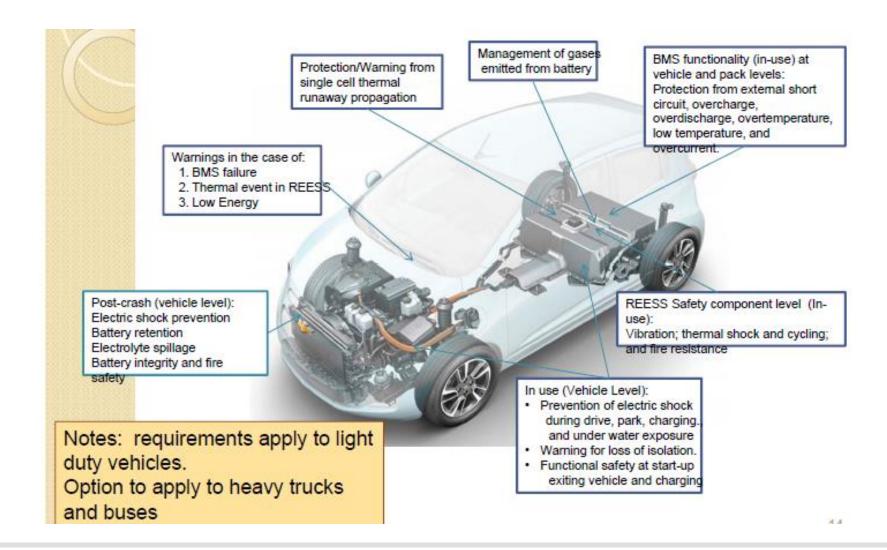

- Swappable battery vs fixed battery (separate vehicle and energy business)
- City electric bus fleet on Opex model
- Multi-modal electric transportation solution in cities (auto, taxi, bus, metro)
- Electric shared fleet (Ola, Uber)
- Electric fleet for delivery, e-commerce services
- Electric retro-fitment solutions for in-use vehicles

Electric Vehicle Standardization In India



EV Regulations

Indian Standard	Ref. Standard
AIS 038 Rev 1 :Requirements for Construction and Functional Safety	ECE R 100
AIS 039 Rev 1: Measurement of Electrical Energy Consumption (Wh/km)	ECE R 101
AIS 040 Rev 1: Method of Measuring the Range (km)	ECE R 101
AIS 041 Rev 1: Measurement of Net Power & Maximum 30 minute power	ECE R 85
AIS 049 Rev 1: CMVR Type Approval for EV	-
AIS 048: Safety Requirements for Traction Batteries	USABC, ISO/IEC Standards

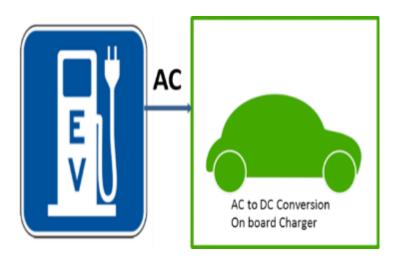


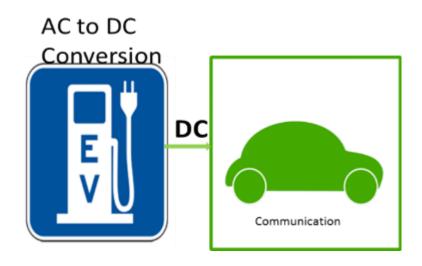
EV Safety (EVS) GTR 20 - Phase 1: Circle of Safety

EVS GTR 20 – Phase 1 : Requirements

HEV Regulations

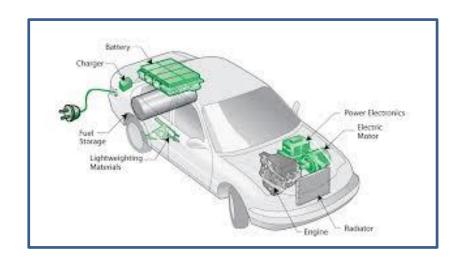
Indian Standard	Ref. Standard
AIS 102 (Part 1): CMVR Type Approval for Hybrid Electric Vehicles with GVW < 3500 kg	ECE R100 ECE R 101
AIS 102 (Part 2): CMVR Type Approval for Hybrid Electric Vehicles of M and N Category with GVW > 3500 kg	ECE R 83 ECE R 85


EV / HEV Retro-fitment Regulations


Indian Standard	Ref. Standard
AIS 123 (Part 1): CMVR Type Approval of Hybrid Electric System Intended for Retro-fitment on Vehicles of M & N Category having GVW <= 3500kg	
AIS 123 (Part 2): CMVR Type Approval of Hybrid Electric System Intended for Retro-fitment on Vehicles of M & N Category having GVW > 3500kg	Nil
AIS 123 (Part 3): CMVR Type Approval of Electric Propulsion kit Intended for Conversion of Vehicles for Pure Electric Operation	

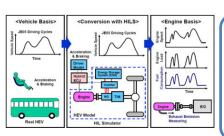
EV Charging Regulations

- AC Conductive Charging
- DC Conductive Charging



EV Charging Coupler, Protocol Standardisation (MoP Guidelines)

Charging Type	Ref. Standard
AC Low Power Slow Charging (Mains 230 VAC, 15 A, 3.3 kW)	IEC 60309 (BEVC AC001)
DC Low Power Fast Charging (48/72 VDC, 200 A, 10/15 kW)	IEC 61851-24 System B (BEVC DC001)
AC High Power Fast Charging	IEC 62196-2 (Type 2)
DC High Power Fast Charging	IEC 61851-24 System C (CCS) IEC 62196-3 IEC 61851-24 System A (CHAdeMO)



Electric Vehicle Development Challenges

EV Powertrain Development

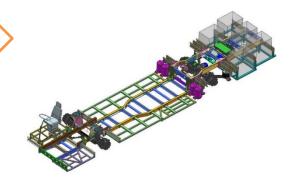
- Domain Expertise
- Simulation and Modeling Tool Chain

Component Sizing and specification

Vehicle Calibration

- Chassis Dyno. calibration
- Vehicle
 Parameterization

System Integration


- Configuration Design Component Layout
- Harness Design
- Packaging

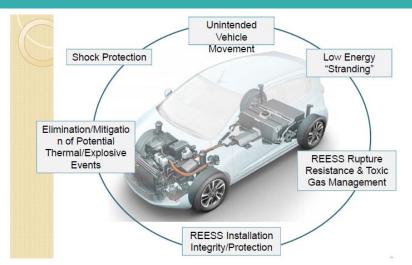
EV Chassis Development

Lightweight Chassis Design

Structural Adequacy Evaluation

Suspension Evaluation of Multi axis Technique

Evaluation of Battery Structure and supports using Multi-axis Shaker table "MAST".

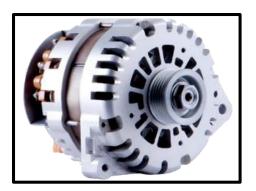

Four Poster durability of EV for structural adequacy

EV Safety

Electrical Safety

EMC

Crash / Frontal Impact



EV Components Development

Electric Motor

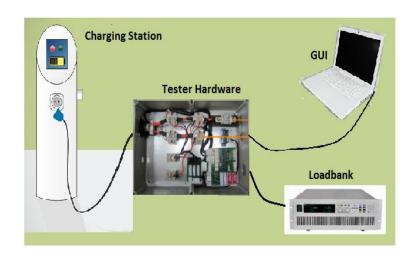
- High efficiency
- Performance
- Durability

Charging Stations

- Safety / Weatherproof
- Communication
- Interoperability
- Rollout

Battery

- Safety (Mechanical, Thermal & Electrical Abuse)
- BMS
- Cycle Life



EV – Charger Interoperability

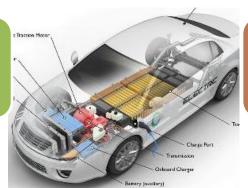
Charger Tester:

- Simulates Electric Vehicle environment for offline testing of Charging Station.
- > Load bank is charged by charger.
- Automated testing, Fault simulation and Data logging.
- ➤ Useful for testing Charging Stations according to AIS138.

Load simulator for design validation and certification testing of Charging Station functions:

- > System inspections, verification and validation.
- > System verification (Protocol validation)
- > EVSE power ready recognition
- > EVSE connected to vehicle function (Locking mechanism check)
- > EVSE charge delivery function
- > EVSE Control Pilot Signal communication test
- > Power Failure Check.
- > Automatic data logging and Report generation

ARAI's Center of Excellence (CoE) on E-Mobility


Power Train

Performance Evaluation

Chassis

Component

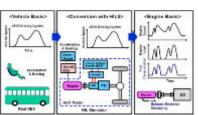
Safety

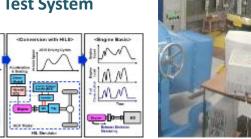
ARAI's Centre of Excellence on E-Mobility

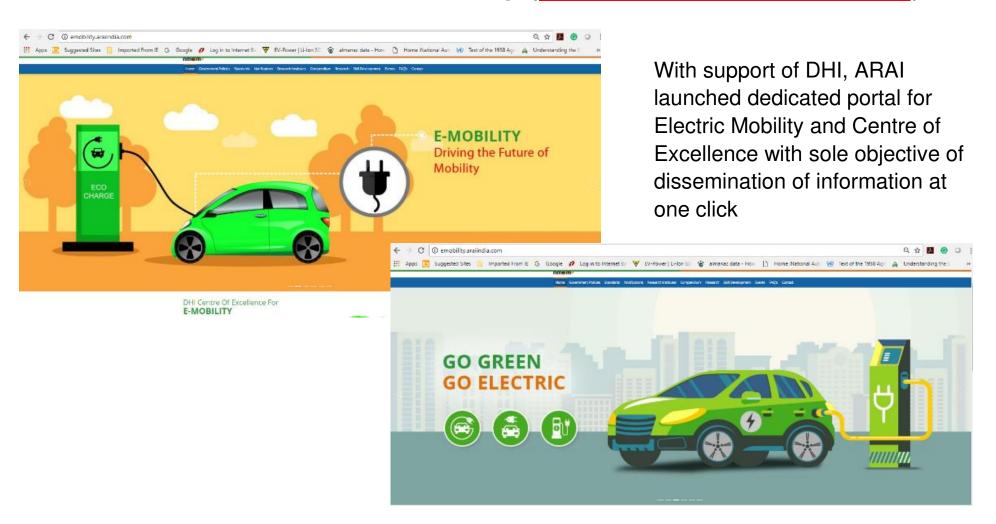
Environmental Chamber To Test Lithium-ion Cells Of Traction Battery

Pack Level Lithium Ion Battery Test System

E-motor Test Bed 150kW and 250 kW







Web Portal for E-mobility emobility.araiindia.com

EV Charger – Technology Available for Transfer

In-house development

Simulator

Developed in partnership with an Indian power electronics manufacturer

Power Electronics

Communication & Charge Control Software

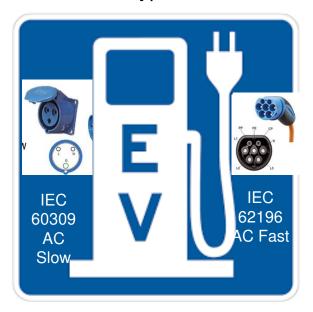
In-house development

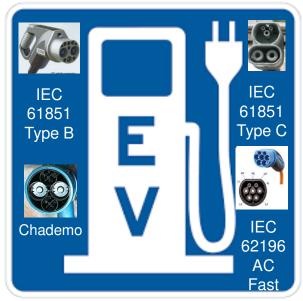
Coupler

Bought out

AC & DC Public Charging
Station

General
Electrical /
Electronics


Bought out


EV Charger – Technology Available for Transfer

AC Charging Station Prototype 1 & 2

- AC-3Ø Industrial Connector 3.3 kW each
- ➤ AC-1 Type 2, 22 kW

DC Charging Station Prototype 3 & 4

DC Charging Station
Prototype 5

- > DC-001, 40-100 V, 200A
- DC-CHAdeMO, 200-500V 140A
- > DC-CCS 2, 200-500 V 140A
- > AC-1 Type 2, 22 kW

- > DC-CCS, 400-800V 125A
- ➤ AC-1 Type 2, 43 kW

BMS – Technology Available for Transfer

Main Features

- ☐ Monitoring of every cell Voltage
- □ Intelligent cell balancing (efficient passive
- balancing)
- ☐ Monitors State-of-Charge
- ☐ Monitors State-of-Health
- ☐ Active De-rating and Monitoring
- ☐Thermal Management
- ☐ Failure and Diagnostics
- ☐ Temperature Monitoring (NTC)

Thank You...

