

RETROFITTING FOR ELECTRIC VEHICLES Status, Potentials and Challenges

Speakers:

Nakul Kukar

CEO & Co-founder Cell Propulsion

Shalendra Gupta

CFO & Co-founder Altigreen Propulsion Labs

Moderators:

Dr Parveen Kumar

Senior Manager WRI India

Shravani Sharma

Project Associate-Electric Vehicles, Policy and Infrastructure, WRI India

ALTIGREEN DRIVE ELECTRIC

EV Retrofits

A Webinar July 29, 2019

ELECTRIC MOBILITY FORUM

Survey and the states of the second states and the second states and

CONFIDENTIAL Do Not Circulate Shalendra Gupta shalendra@altigreen.com +91-81303-70555

Why Retrofit

Customer's Needs

- Financial goals
- Sustainability goals
- Vehicle end-of-life

Society's Needs

- Public health
- Climate change

Government's Needs

- GDP growth
- Crude oil consumption
- ForEx conservation
- Carbon intensity of development

Industry's Needs

- Leadership position
- Inevitability

Fuel Price / Capita Income

SOURCE : Fuel Price - Internal SIAM Data

Stakeholders

LANG AND AND AND

ALTIGREEN

Fuel is Expensive

"Rising fuel costs have forced us to make major design changes. Like the in-dash ATM, in case you run out of gas money."

Contributions to Global Warming

World fossil carbon dioxide emission 1970-2017

Million tonnes CO2/ year

Hard Facts

- 1,200,000 Premature deaths in India due to outdoor air pollution, each year
- 25% Share of road transport in air pollution, including GHGs
- 14 of Top 20 Worst Polluted Cities of the World are in India
- Millions Others suffering from severe to mild ill-health due to air pollution
- 5% GDP impact of air pollution
- 85% India's crude oil imports as percentage of consumption
- 2x to 5x Amount of emissions from older vehicles, compared to new vehicles

Types of Retrofit

<u>Hybrid Electric</u>: In which the electric drivetrain is added to an existing vehicle and supplements the internal combustion engine to create a (P)HEV.

- Regulated by AIS-123 Parts 1 and 2
- This is usually a 'torque-assist' system

<u>Full Electric</u>: In which the electric drivetrain replaces the internal combustion drivetrain in an existing vehicle to create a BEV.

- Regulated by AIS-123 Part 3

How It Works

During acceleration:

Altigreen's motor intelligently assists engine at just the right moments -

- Engine needs to generate less torque
- Lowers engine RPM → saves fuel!

During braking:

Altigreen's motor becomes an electrical generator (regeneration) -

- Converts waste energy to electricity,
- Saves energy in battery system.

- 1. Saved battery energy drives motor.
- 2. No need for external charging infrastructure!

Key Components

Motor-generator:

- Replaces the existing alternator in the vehicle.
- Motor to assist engine
- Powers aux 12 V loads
- Charges battery during braking via regeneration.

Controller:

- The 'brain' of the system.
- Ensures motoring and regeneration occur at precise moments.
- Manages battery charging / discharging

Battery pack:

- Saves energy during braking.
- Delivers energy to motor during acceleration.
- Ultra-caps / Lead Acid / Li-ion

2W, 3W, 4W, ...

Global recognition

- HyPixi[™] awarded 19 global patents
- Patented in 60 countries including USA, Europe, Africa, SE Asia, Australia.
- Recognized as a unique retro-fitment solution globally.

Challenges of Retrofits

Technical

- Adequate power
- Marriage of 2 drives
- Regenerative braking
- Storage tech

Financial

- Cost of product
- Cost of fuel as proportion of total cost of operations

Regulatory / Policy

- Homologation by model, variant and year
- State-level approvals
- Government support

2W, 3W, 4W, ...

Challenges of Retrofits (contd)

Customer acceptance

- Certainty of benefit
- Peace of mind
- Cost
- Reversibility

Safety

- Vehicle balance / structure
- Fire
- Explosion
- Catastrophic failure

Examples from Altigreen Retrofits

Maruti Suzuki Swift Dzire	
OEM Mileage (km per litre)	17.4
Hybrid Distance Covered (km)	71,386
Hybrid Mileage (km per litre)	21.7
% Improvement in Mileage	25%

Toyota Etios	
OEM Mileage (km per litre)	10.5
Hybrid Distance Covered (km)	30,000
Hybrid Mileage (km per litre)	13.7
% Improvement in Mileage	24%

Tata ACE Facelift BSIV		
OEM Mileage (km per litre)	8.64	
Hybrid Distance Covered (km)	6,334	
Hybrid Mileage (km per litre)	10.49	
% Improvement in Mileage	21%	

Tata ACE BSIII		
OEM Mileage (km per litre)	11.3	
Hybrid Distance Covered (km)	11,112	
Hybrid Mileage (km per litre)	13.8	
% Improvement in Mileage	22%	

Possibilities: Enormous – a market size of millions of vehicles

Status: Embryonic – less than 500 retrofits so far

Future: To be determined

Thank You!

6 WAR AND A AND A

CONFIDENTIAL

Altigreen Propulsion Labs Pvt Ltd Bangalore, India

