PSIebus – The central basis for charging at the depot

- **State of charge**
 - Vehicle-ID
 - Mileage status
 - Expended energy
 - ...

- **Vehicle master data**
 - Manufacturer
 - Year of manufacture
 - Type of battery
 - ...

- **Block data**
 - Length of block
 - Energy demand
 - Vehicle type
 - Driver qualification
 - ...

- **Vehicle dispatching**
 - Communication with the buses
 - Parking position assignment/
 Selection of charging station

- **Network information**
 - grid
 - Energy market
 - ...

- **Charging plan**
 - Response

- **DMS**
 - Measurement (U,I,P,Q)
 - Transformation technique

- **Smat-Charging**
 - Communication with the buses
 - Parking position assignment/
 Selection of charging station

23.10.2020
Monitoring of the charging processes
Overview of a depot – example 1/2
Overview of a depot – example 2/2
Key Learnings

- A depot management system saves operating costs for all types of bus fleets already right now
- Software is independent from hardware suppliers
- An integrated depot- and charging management system helps to utilize your fleet best
- Integrating the grid supplier ensures future and modern grid management
Your benefits with PSIebus

- Planning, monitoring and optimization of all charging processes
- System already running successfully
- Control of charging based on the predicted energy demand
- Charging just as needed, net expedient charging
- Demand-oriented distribution of the available connected load
- Consideration of all operational requirements
- Integration into the network of the energy supplier
Succesfull Projects

RBL/ITCS
Train Management
Depot Management
PSIebus

PSIebus: The strength when combining Depot- und Charging Management
PSItraffic/DMS – Selected projects
Hamburger Hochbahn AG

- approx. 600,000 passengers per day (bus division)
- >1000 buses
- 110 bus lines
- 1,317 stops
- 927 km line network
- 6 depots

23.10.2020 PSIbus: The strength when combining Depot- und Charging Management